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E

ON THE DETERMINATION OF THE SHAPE OF THE GEOID

AND THE SHAPE OF THE EARTH FROM AN ELLIPSOIDAL

SURFACE OF REFERENCE.

ABSTRACT:

By introducing gravity data into geodesy it has been possible to solve some of the

geodetic problems not only in a purely geometrical way but also with full considera-

tion of the dynamic parts of the problem. The first approach for the determination of the

shape of the earth by the aid of gravimetric data is based on the famous formula of Stokes.

According to this formula it Is possible to determine the shape of an equipotenUal

surface if the gravity is defined in all parts of the surface. The method has been extensively

used up to now for a determination of die so-called geold of the earth, in spite of the

fact that the formula is only correct for a spherical surface and not for a spheroid such as

our own earth. Another objection to using this formula Is the fact that one has to know

the gravity values an the so-called geod and not on the surface of the earth. However,

this is In practice an important limitation because measurements ctan normally not be made

at the surface of the geoid in other places than on the Oceans.

Evidently we have In total two fundamental objections against using the method of

Stokes for our geodetic problems. During the last 15 years there has been extensive

work In this field In order to improve the present technique. The most Important contribu-

torn have been made by Rusian scientists as for example Molodensky and Sagrebn. Moloden-

sky showed in his contribution that it was posble to solve the Integral equation which defines

the shape of the earth diely bo gravity measurements at the physical surface of the earth.

Sagrebin made a similar solution of the Inegral equation when there is a change of the

reference surface from a sphere o an ellipsoid.

Alhosbh the two meh6ds have not hitherto been used to any wider extent for practical

appicatiom. It Is still evident that they have given a new view of some of the fundamental

problems in mVoesy. For a special study of the ellipsoidal surface of reference. the method

of Sagrebln has been chnoe as the theoretical background. However, a study of die deduction

of the sum of crtain Legmndre polynomials used b) Sagrebin shows that most of Sagrebhis

final formulos are Incorrect. Therefore it wu covidered Important to resolve the problem by
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the aid of new derivations. This study is based on the same formulas as Sagrebin used

for the conversion of the LamJ functions to Legendre polynomials.

For a final computation of the resolvent equation, all functions have been recomputed

in order to get a correct resolvent. The new expressions are somewhat more complicated

than those of Sagrebin and an electronic computer was required for the final study.

According to the method used by Sagrebin, it is necessary to make not less than

nine complete integrations over the earth in order to obtain the final value of the geoidal

height of one point. This means that the method is too tedious for practical use. Another

way to approach the problem is to make use of an iterative method such as Molodensky

has suggested. There is no objection to such a method, except that in most cases it is

desired to obtain the final answer after just one integration. It is evident from a purely

abstract point of view that repeated integrations will increase the accuracy of the computa-

tions.

Preliminary studies made it clear, however, that little increase of the final accuracy

is obtained by using such a high number of integrations. In the method used here for com-

puting tht resolvent. all intcgration steps are taken into consideration, but all this inforrna-

tion is compiled in such a way that t~o integrations are suiticient.

Collaborators have been

Mr. Lars-Eric Ericsson

Mr. Per Karlsson

Mr. Michel Creuzen

Mr. Sven-Ake Gustafson

Stockholm, 28th November, 1962.

Arne Bjerhammar.



THE FIGURE OF A SURFACE DETERMINED

BY THE AID OF GRAVITY DATA.

There are a few fundamental relations which are of utmost importance for any geodetic

use of gravity data. The Newtoniani potential of a body is determined by the function

* - SSSf± dV
r

where

W a the potential

p a the density of mass

V = the volume

r = the distance between the volume-element and the actual point.

The potentional W is said to be harmonic if it satisfies the Laplace equation:

a2 a2W a 2W
W 'W 8A x 2 + -2 2 a2

The potential, due to the gravitation effect of mass, is harmonic In all points

not occupied by this mass. In a continuous massdistribution the potential satisfies the so-

called equation of Poisson:

a A 0 - 411p

For a rotating body the potential is no longer harmonic as the total potential is de-

fined by the function

W= f') dV + 0.5 2 2
r p

where p is the distance of tht: point to the axis of rotation.

The gradient is now given by

grad W F" - cos(r, x)l dV + w p ' 0(p x

Co(rr [c os(p. Y)

cos(r z) cos( pz)



For a simple solution of geodetic problems It is necessary to work with an harmonic

potential-function. Therefore the geodetic potential is normally replaced by an harmonic

parameter which is defined as the differenco between the geodetic potential and the po-

tential of a theoretical earth. If these two potentials are identical with respect to the centri-

fugal part, then our new parameter, the so-called disturbance potential, is harmonic, and

the well-known Greer, theorem is valid

W -Up WTP ~ ) (W-U) r ( a - a) dS
P 2 P t 2n L 7 r Ti T T i

where

W = the true potential at the actual point

up = the potential of the theoretical earth at the actual point

n the normal of the surface

r a the distance between the actual point and the running point

S - the surface.

In order to obtain an harmonic disturbance potential it is required

that the theoretical earth (the reference-surface) and the actual earth

coincide with respect to their axes of rotation.

This is the first important condition for a solution of conventional type. In order to fa-

cilitate the solution, another important condition will be added later. For a full understanding

of this approach we note that in case we have a given surface, it is possible to compute the

potentials directly by aid of Greens theorem. This problem is the so-called Neumann problem.

If the surface is not known, then there is no simple straight-forward solution. The solution

according to Stokes has, however, been a useful approximation.( See equation 28 "The Earth

Form from Potentials and Gravity".) It has however to be remembered that any solution of this

type is based on the approximation of performing the integration over a sphere instead of over

the true surface of the earth. Of much greater importance is another limitation which is caused

by using Stokes'formula. From our formula 26 we find that the Legendre polynomial of order

one is omitted from our solution. This means that the gravity centers of our

theoretical earth and the actual earth have to coincide. This is the second

important condition for a solution of conventional type.
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We have to note that the solution from the Stokes formula is only valid for an equi-

potential surface. It can be proved that for a number of applications the solution gives a

useful approximation but when it becomes necessary to make a detailed study of the shape

of the earth, then Stokes' formula is insufficient.

The following study is made in order to obtain a resolvent which can replace Stokes'

formula for an ellipsoidal reference surface.



*6-

STATEMENT OF THE PROBLEM.

The following quantities are assumed to be given at the outset:

a) Some reference surface; In the general case this may be an ellipsoid with three

unequal axes, but because of the very small eccentricity of the equatr this will

later be taken as an ellipsoid of revolution.

b) Gravity anomalies Ag = g - y where g is the acceleration of gravity on the geold

and y is the acceleration of the theoretical gravity on the reference surface.

The quantities scught are the height-differences N between the geoid and the reference sur-

face, measured along the normal of the reference surface. The height-differences N are related

to the disturbance potential T according to the following formula:

NN=T (1.

The geoid can be determined as soon as an equation is obtained to solve the T. If the

reference surface is a sphere. the required relation is given by the so-called "fundamental

equation of gravimetry":

2T 0 T
R On(12

which is satisfied by Stokes' solution:

T -- Ag s(t) dS (1.3)

Where n is the outer normal of the reference surface and dS is the surface element of a sphere

with radius R. The goal is now to obtain a similar boundary condition, valid for an

ellipsoidal reference surface.
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THE FUNDAMENTAL EQUATION.

In dealing with problems concerning ellipsoids, It is advantageous to use the so-called

"ellipsoidal coordinates". The orthogonal system of surfaces is a set of confocal qua-

drics. represented by the equation

2 2 2
---- x + = +(2. 1)) 2 h2 X 2 2 2

Considering (2. 1) as an equation in X one can distinguish three sets of roots, depending

on the sign of the denominators in equation (2.1). Calling these sets p,#., v we have the,

relation
2 2 2 k2 2

p 2> h > p > k > (2.2)

From (2. 1) and (2.2) it follows that the p defines a set of ellipsoids. It must be no-

ticed that the three axes of these ellipsoids, in order of increasing magnitude, are located

respectively along the x, y and z-axet. ,st and v define two sets of hyperboloids,

orthogonal to th: ellipsoids and to each other.

Equation (2. 1) must be transformed in order to make the quantity h equal to unity.

) 2I _L 2 z
h I 1 (2.3)

2 X 2  k2 X 2( ) .(-)
hs h

This can be rewritten as follows:

2 2 2

2x + 2 Y 2 + 2

Therefore relation (2.2) becomes

2 "! 2 2
P2>I > >q 2>V2(2. .i)

Every point in space is determined by giving the ellipsoidal coordinates p, , v.

If a1, a 2 and b are the half-axes of the reference ellipsoid In question, in order of

decreasing magnitude, this ellipsoid can be characterized by the relations

p = pO = a1  (2.6)

and
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2 2
2 a1 I a 2

- = 2 2 (2. 6)
a I b

Let U be the gravity potential of the reference ellipsoid which at the surface

P = po has the value U0

(U) = U (2. 7)
POP 0

The acceleration of gravity on this surface is determined by the equation

d0U 8 U do
ou au -Y .(- ) (2.8)

On p =Po

The gravity potential of the geoid is denoted by W. W is cosidered to be composed of

the potential of the reference ellipsoid U, and an additional part, the disturbance potential T.

On the surface of the geoid

W = U + T = W (2.9)0

The acceleratiorof Sravity,g. is obtained by the formula:

aW OU aT = U d a 0T ( 1

g n On an Op dn an

If Ap is the increment in the ellipsoidal coordinate p, corresponding to an increment N

along the normal of the reference surface, the following relation is valid

p = N dp (2.11)
dn

In (2. 10) we replace U by thk. first two terms of Taylor's expansion:

U a (U)p=po + AP (I ) o (2. 12)

or

U= (U) + N o (2. 13)P=Po 8pd P Po
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The next term can be shown to be of the order of a2 (a is the flattening of the earth).
2 -5

Terms of this order will be neglected in all subsequent formulas. (a 2 10 ).

(2.13) is reduced with the aid of (2.7) and (2.8) to

U = U 0 Ny (2. 14)0

Substituting (2.14) into (2.9) gives

U - Ny+ T = W (2.15)
0 0

or

T = W - U + N y (2.16)
o O

If we assume W = U we have found equation (1.1). This relation is sometimes called0 0

"the lemma of Bruns". We now proceed to derive the fundamental equation for T. By Taylor's

expansion of (2. 10) we obtain

g UPPO 8 p 2 U dp dp dnp=Po a
O p2 p P= dn P=po dp d~ 0  C

2
As in (2.12) we neglect here the terms with Ap so

a U & Ca U /d Ud i aCT
9=- Ap + (p)

2 1Op dn Cp dn Cp dp dn J Cn
p=po P=Po p=po

using (2.8) and (2.11) we get

g - y = N a - .L T  2
Cu, Cn- (2. 12)

and taking (1.1) into account

T LT (2. 18)

g" = } an an

In expression (2.18) the derivatives of y and T are both taken along the normal to the

ellipsoid. This is not exact in as much as T must be differentiated along the normal to the

geold. In neglecting the angle e between the two normals (called plumbline deflection) we

introduce only a small error, namely the difference between cos e and 1. Since a is always

smaller than one minute of arc the error is of the order of a 3 . We can safel y use formula

(2. 18) or in its final form:
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a T

0YT + =s - g (2.19)
v, On dn

This important formula can be derived from simple geometric reasoning.

0

7 N Ellipsoid of reference.

Fig. (2.1) P

2
Omitting terms of the order of N , we obtain for the theoretical gravity at the

point 0;

y (Q) = y(P) + N 808n

or

v (Q) Y (P) + _L _ (2. 20)

On the other hand

8W aU 8T Q 8T
gcQ) ; - ; - Q- o- On

which with the aid of (2.20) results in equation (2.19).
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DETE1 MINATION OF THE UNDULATIONS OF THE GEOID

WITH RESPECT TO THE ELLIPSOIDAL REF RENCE SURFACE.

We now turn to the solution of the boundary value problem, defined by (2.19). In

this solution we are going to use a rotational ellipsoid as the reference surface, although

some of the intermediate formulas are referred to the more general case of a tri-axial

ellipsoid. Hence

a = a 2 = a.

According to a formula of Bruns (1) the ccefficient of T in (2.19) is

S1 ( I ( 1 2w 2  1)
y an Pm Pn 7

Here w Is the angula, velocity of the earth. Pin and pn are the principal radii

of curvature at the point of the llipsoid.

2 2 T
a( + e sin B)

P + 2 ( 2)

2 2
Pt ( + S 1 .in ) (:3. 3)

2 2
2 a b2

b 2

where e1 is called the second efcentricity of the ellipsoid. B is the reduced latitudk, of

the point in question.

The boundary relation for T can be written in the form

I *ZT + -T (3.4)

(1) Bruns, H. Die Figur der Erde. Publik. Preusz. Geodat. Inst. Berlin 1878.
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Here

* do 2 2Ag = .-d V I e sin B.Ag (3.5)

Neglecting terms of the order of 4 and since a =a b or
el a

b = (1 a) a, we have

2 a (2- a) (a 2

e = 2 2a + e (
I (1 - a) 2

and

( + q + a cos 2 B ) (3.6)
y ap p

where 2W

q

Hence the final boundary condition is

1 + q + acos26) -"+ a 1 (3.-7)
p ap

This formula is an extension of the fundamental formula of gravimetry for the case

of a slightly flattened ellipsoid of revolution. As is easily seen, the relation (3.7) reduces

to (1.2) for the case of a sphere ( q = o; a = o; 1; p = R;.

Since the quantities of the order of a2 are neglected, we can write for q the value

it has at the equator 2

W a
q =

Writing C for (I + q) and 9(1) for cos 2, which Is a function of the position on the

ellipsoid, the coefficient between parentheses i (3. 7) becomes C + 9(6) . T Is expanded in

a series according to powers of a , for which, as previously explained, only the first two terms

are used T T() + a(T 13.8)

Combining (3.8) and (3. 7), and comparing the ccdflcients of equal powers of a,

we get the two equatiom

2T(0) T(o)
- Ag (3.9)

P Op
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and

C 2T= - e () o (3. 10)
P ap P

If the quantity T( ° ) is found from (3.9) the right hand expression in (3.10) Is

known and (3.10) can be solved in the same manner as (3.9). The complete disturbance,

potential is then obtained from (3. 8).

The height-differences N are, according to the lemma of Bruns, also split up into

two terms.

N = N(0)+ aN ( ) (3. 11)

In all series developments in the preceding formulas, as well as in tre following

ones, the terms of the order of magnitude of a2 and higher orders are neglected. The

error in the height-differences N may thus be of the order of a2  or of the order of

1 cm. Errors of this order can always be neglected. In Stokes' solution the flattening of

the earth is entirely neglected.

The solution resulting from the following method shows an improvement by a factor of

a over the classical Stokes' approach.
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EVALUATION OF THE DISTURBANCE POTENTIAL.

In the following derivations, use is made of the previously mentioned ellipsoidal

coordinates p0,u and u, and of some special harmonic functions of p, At and P, denoted

by R ( p), M Cu) and N (u), the so-called Lamt functions or ellipsoidal harmonics. (The

reader who is unfamiliar with Lam's functions may consult any convenient treatise about

this topic.)

The problem is to find a function T(o) which is harmonic outside of the ellipsoid.

P = Po, and which on the ellipsoid still satisfies the boundary condition (3. 9). A bar is

added to the quantities on the ellipsoid to distinguish them from those in space. The right

hand member of (3.9) must be regarded as a predetermined function. -f (AL, Y ), of the

two ellipsoidal coordinates AL and u.

f dnf~ ~ (-s&.u a g=. 'ag (4.1)

but -Q can be written
dn

Q (p 2 
- 2 2 '

dn o o - ) = l R 1 (p) R2 (po) (4.2)

where, according to Liouville

2 1
z 2 2 ) I(p2 2

R and R2 are the first two functions of Lam$ (see Poncar "Figures d'iquilibre d'une

masse fluide" 1902).

The boundary condition (3.9) becomes

2Tio) 87(o)
c + 5 f (P.) (4.3)

p Op

where

f (., V) I R (P R(p Ag (4.4)0o 1l0 R2lP o )

The fiaction f (p. v) can be expressed as a sum of products of the form M (LI; N (v)

as-2-. is a limited and continuous function on the surface. The Lam, functionm S, R, M and

N, will be given two indices, n and m, the first one to denote
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the order of the function and the second for the number -within the order. For the func-
0 1 2 P

tions of the first order R1 R1 , R e keep the notation used by Poincare: R 2 R2

and R3 .

Although the starting formula (3.9) has been obtained for an ellipsoid of revolution,

in this section the general notation defining Lams functions for a tri-axial ellipsoid

will be used. It can be noticed that for an ellipsoid of revolution R2 = R3 .

Since T satisfies the equation of Laplace outside the ellipsoid, we can express T

as follows:

c 2n

T(°) = £ E Am Rm(po) Sn(P) m (,m ) Nm() (4.5)
nn n 0 n n n

The disturbance potential T is not uniquely defined without knowledge about the

position of the reference ellipsoid and its relation to the earth. Therefore we add the

assumption U = W , which implies that the term of order n = o is equal to zero,0 0

and the assumption that the centers of gravity of the earth and the reference ellipsoid

coincide, which implies that also the term of order n = 1 is equal to zero. As can be

seen in (4. 5) the summation over n is taken from two to infinity. The function f ,. v)

is thought to be Lxpressed in the form

f 2n Bm Mm (i.) Nm (u) (4.6)
= 2 mxo n n n
nu2 m=o

For the sake of brevity the following notation is used.

A Mm (p, Nm (v) P
n n( n

Bm Mm ()Nm
B InM (Q&) N II(U)g*

n n n n

Expressions (4.5) and (4.6) become now

0o 2nT(a) = I; I Rm ~ m pm
T no) E~ E n (Po Sn (P) nm (4.'7)

n=2 m=o

and
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w 2n
E m (4.8)

n=2 m=o

At the surface of the ellipsoid p = P0 we have

1C 2n M
2C )(o) n 2C m ) P (4. 9)

PO n2 opo n 0 nl 0 nl

cl(o) 2n Rm ( OSP) (4.10
P=E E R n () P =P o  n

n=2 m=o 0

From (4.3). (4.8), (4.9) and (4.10) we obtain

S2a in 2CS(p)

E E Rn n (Po) S (P 0) + - - p
n--2 mao 0 I ~ S I(P) 0 O /p Pm

O 2n

a- E g (4.11)

n=2 m=o

Thus,

pm n (4. 12)

Rm (p ) 5 m (p + {!. (aSn(P)
n 0 n 0 0 m a

Rn(Po nl~)  m(Pon 8Pp=po,

SubsUtuting (4. 12) into (4.') we get for the disturbance potential the following ex:

pression

OD1 2n n *1
S2n Sni~p) 8n

T( O)  E - ( (4. 13)
na m 2 1 n ( )

pm=oSn -(Po 0 --S
n 0 ap P Po

Replacig R (p) and S (po) by R and S we get for ppo

-(o) cc 2n n
T E m

0=2 Mo0 OS 2C

n
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or cc 2n m

T(O P E £ (4.)4)
n -2 L1=o d In S

- in p n 2C

In the special case of. a non.-rotating sphere this yields Stokes' solution.
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THE HEIGHT-DIFFERENCE N EXPRESSED AS AN INTEGRAL.

We try to get now an expression for the height difference N analogous to the

expression of Stokes. Taking into account the orthogonality of the LamL' functions.

we can write:

.*.[M m m
g L (,,) Nm (,) M ( ) N(v') dw (5.1)

n

where

Inm2

I = I (Mm Nm )  dw (5.2)
n oa n n

dw represents here the surface element of the ellipsoid. The series (4.14) is written

in a shorter form as

C-0 2n

(o) = p E E Tm (S..)

n=2 m=o

T = n 5.4)
n Em

n

d In S
m

En 2C (6.5)

d In p

Thus

T 4In Im as A M m(p) N In() M (D' N (i/) dw (5.6)n 4uIn EM  0 n

n n

Using (5. 8) we have

co 2n M (p) N 1 (Y)M n(A) m

T(O). ;-'S IoAg* E m ns (5.7n)
nr2 mco I E
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By (4.4) we obtain

1 Ag
1 R1 R201

Noting that R3 = p. we have

T1() R 3 $ Ag G ( ,, ui'. &/) dw (5. 8)
41 RI R2

where
CAD 2n MM (A)N I()M IM) NM (v)

G(p .z',g.v) = £ E n n n n (5.9)

n=2 m=o Im Em
n n

For the case of an ellipsoidal reference surface we have a formula analogous

to that of Swkes:

N(o) R ASG (A,. ,Ab. v) dw (5.10)

4v R1 R 2 y

or

N(o) .L_ 1o 0 ,.G dw (5.11)

We have the relation I dii = do, wbere do Is the surface element ofthc
0

unit sphere, and dwi s the element of surface on the ellipsold.
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THE CASE OF AN ELLIPSOID OF REVOLUTION.

In the course of deriving the expression for the height differencsa N, the deviations

of the geoid from ellipsoidal shape, we have not required the ellipsoid to possess any

rotational symmetry. As pointed out before, the eccentricity of the equator of the earth

is not very pronounced. As a reference figure, which does not necessarily claim to be

the final solution, an ellipsoid of revolution serves excellently.

In this case, the products M N degenerate into ordinary spherical harmonics, and

the functions R and S are transformed into Legendre polynomials of the first and second

kind respectively and of imaginary argument.

Thus we have for the case of rotational symmetry:

R 2 R = sin e

M m (,) X m (cos 6)
n n

m ( in M Xn v) =LO'S M X

e = 900 - B, where B is the reduced latitude.

P = i5 p + s; s = -

Rm (is) xm(is) S (is) = 0r(is)
n n n n

A d ds I + s 2 d
dp ds dp s ds

Thus we get

Im [P- (cos )s M) do- (n~m)I
n 41 nsnm X1 ,,+ |)(n- m)l c

in

(6.1)
(cm = 1 f~r me=o; c = 2 for m~o)

m
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Em = - 1 s2 In Q (is) - 2C (6.2)

n s ds

C 1l+q

That is

0 0

where 0 X now denote the fixed point and 0, X the running point, and
0 0

r-e, n (2n+1)(n-m)! c P (cos O) cos m(X-X. )In n0
z(e o.6. X) = E 

n

n=2 m=o (n+m)! En

(6.4)

Note: we sum over from 0 to a (not 2n) because the rotational symmetry introduces

a degeneration. For a given n, there now exist only(n+l) linearly independent functions.

Quite naturally, tht product N1111 N 1 must differ from the elementary spherical harmonic
m (cob m A.

Pm (co, r <9sin m IIIJ b) a constant factor, but this factor is cancelled, i. its ,quar,

occurs both in the numerator and the denominator of the formula ( 5. 9) for

G (,,u.', W') since I'l is in the denominator.
n

Thus (5. 11) takes the form

N(o) 1 a ,gZ (0 , o , e, X) dw (6..,

E
0

where Z Is given by (6.4).

Now we transform the domain of integration from that of the ellipsoidal surface to

that of the unit sphere. Remembering that 1 0od = do and taking (5.11) into account,

we obtai;- the formula:
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N(o) " , L AS* (o 60. , do (6.6)

When finally we introduce the facts 'that Ag* VlI+e 2 sin2 a Ag and psa

we obtain for the ellipsoidal surface of reference:

N(O)$= a ,.,.2 sin 2BAg Z(6 X . .X) do (8.7)

where Z is given by (6.4), EI is determined by (6.2). It can be shown that (6.6)
n

contains Stokes' formula as a special case, and thus (6. 6) can be regarded as an extemion

of this formula.

The function Z given by (6.4) must now be studied more closely. Doing this in

accordance with Sagrebin, we find the following expression after a series expansion:

Z(o, X. 6. X) = S(,) + e2 0 .).19X) + 2q (f) (6.8)

where 0 and ip stand for the following expressions:

CI> C n 2 ( 2 n + 1)
O(t; o 0.o .) - n (- P n (cos *) +

n=2 (n-1) 2 (2n+3) n

0 20 2n.1l 2

(n- )2( P n(cos E) - 2n.1 (Cos
n=2 (n-1) (2n+3) n=2 (n-I) 2 (2n+3) 8 (

(6.9)

oQ2n+1

E(9 . P cos(9) (6.10)

n-2(n-1) 2 n
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INVESTIGATIONS OF THE FUNCTIONS OAND 7P.

We begin studying the function

0t;eox0 . oX) I 2 :32 0.L0.

The first two terms of (7. 1) are functions of the angular distance * between the

two points (6 o . X 0) and 49, X) where e is the complement of the reduced latitude.

These functions are expressed by the equations (cf 6.9)

C1. n 2 ( 2 n + I)

i (4,) = n( P (cos 4,) ('7.2)
u=2 (n- I) 2 (2n+3)

0 2n+1
02(4' = E P (cos 4) ('7.3)

n=2 (n- 1) 2 (2n+3) a

The third term In ('7.1) depends not only upon the relative position of the two points

but also upon their absolute position on the ellipsoid. Thus the third term is a function of

all four coordinates 6 .). O , .

If we change the order of summation and differentiation in the last terin of (6.9)

we have the formula

3 o (. .X , X 3 2 42 (4) ('7.4)

0
or

a , to) 8 to 2 a 12(,) 82,
(- o X) =( ) +-- ('7.5)( o o2 ax #2 ax z

0 0

a 2
It is clear that the derivatives - and 2 must be functions of both sets of

coordinates 6, o 6. X. 00
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The derivatives can be obtained from the formula (the spherical cosine theorem):

cos 4 = cos 6 cos 0 + sin 9 sin 6 cos (X-X ) (7.6)
0 0 0

Thus for the evaluation of the function 0 it is sufficient to obtain the functions

0 ( * ) and 0 2 ( * ) whereupon 0 3 car, be found by ordinary differentiation. To obtain

01 and 02- We decompose the fractions preceding P ( cos 4) in (7.2) and
n

(7.3) Into partial fractions. We obtain

n(2n+ ) 34 1 3 1 18 1

(n- 1) 2 (2n•3) 25 n-i 5 (n-i) 2  25 2n+3

and

2n+1 4 1 3 1 8 1

(n- 1)2(2n+3) 25 n-i 5 (n-i)2  25 2n+3

Thus Mo 26 G

0 ( +) + 202(4) = - E Pn (cos 4) - E n(cos
n=2 25 n=2 n- n

3 1 2 1

4- - P (cos *) + E - P (cos 4)
5 n=2 (n-1)

2  n 25 n=2 2n+3 n

The function 0(4,) (cf 6. 10) takes the form

0(t') = 2 E - P (cos 4) + 3 C P (Cos 4')
n=2 n-I n n2 (n-i) 2

Writing the above expressions in a shorter form, we have

0 )X I) 26 f)+3 41"-0,(') • 202(4) - - -( .!I 9 ) 2-, S/"+ ' 3(4')
20 25 1 5 2 254

j 93

(71.6)

02 4 + 8 (7.7)2s* ff 25 €11 +5vs .2 25 3 (, 7
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(9) = 2 +(4) + (9 ) (7.8)

where for convenience we have introduced the expressions:

o(0 ) = Pn (7.9)

() p (7. 10)

n- n2 T(~) %(.1
1 (7. 12)

32n+3 n

All summations are taken from n = 2 to n;: ° , and Pn stands for Pn (cos 4).

The sums (7.9 - 12) can be obtained by utilizing the generating function for the Legendre

polynomials:
0@

n 1
£ Pn (cos 9 ) x =

n!o 1 2x cos * + x

or o
n

Pn x =,2'. . -1 - x cos ' (7. 13)
n=2 VI -2x cos + x

Putting x = 1 in (7. 13). we have

1 1 4'
%O(9) -1 - cOS 4 - cosec - -1 cos 4 (7. 14)

V2-2 Cos 92 2

1

Thecsums q (t ) and $(1r) are of the general form: n-k Pn

We Introduce the expression

1 n-k
En- Pn x = SkLt. z) (7. 15)

By differentiation we find the relation

a n-k-I
X k (4, x) k p x
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That Is

5 k (, x) = E P x n- k ) dx (I.16)

But we have, by (7. 13)

n-k-i 1 1£ PnX = t -1-x cos*t(.
nk 1 -2x cos *4 x

Thus

Sk ( r Ix(

where r(x) = i1 -2x w + x 2 and w = cos ' to achieve shortness of notation

To obtain (p we put k = 1:

x
S1 (', x) = $ "1( - 1 - xw) dx (7. 19)

x r(x)
0

and then

9P = S 1 , 1) ('7.20)

S1 (*, x) is evaluated as follows:

x x

S(t. X) = (- 2 2 w ) dx S 2 dx + - In x)
x r(x) x x x r(x) x o

0

(Singulatities which arise when x-wo must cancel in the end result.)

dx (substituting y z ) = -

x r(x) r(y)

but

6 r(y) = y



Thus

ydy_ (r(y) + )dy -r(y) w In y + r (y)
r(y) dy r(y)

- r(x) w n I-x + r(x) + w In x

x

It follows then that:

S .X) J1r(x) w In fI - wx + r(x)i x
1 II1 o

As x approaches zero, L-L) approaches the constant w.
x

Thus

S ('X) = r(x) w In 1 - wx + r(x) w (. 21)
1 x2

Putting x = I we obtain

V (*) SI(*,1) = 1 - w - w- lnW-f-(I-+ - 2w)

2*But w"= cos ,thus sins7n
2-

which yields

' - -'2 +i-I ( ) -s -- cos , - cos In (sin -- s-2 (7.22)

To obtain qs2 (t). we must study the more general sum

1 n-I
H ( t. x) = E P x (7. 23)

Differentiating, we obtain

8 1 n-2 1
H (t.x; = - P x - S(.x) (.24)dx n-I n I

by the use of (7. 5).
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Thus

x 1)
H(4', x) -- $ + S1 (4', x) dx

0

That is
x

H (,x) = $ ( I - x in-W I iwx + r(x)f " " ") dx (7.25)

0 x2 x 2 x

Putting x = 1,

H ( (P) 2 () 1-r(x) W. W -- In Lji-wx + r(x) )dX
0 x x 2

(q. 267)

We consider the expression

1
5l( ) : 1 S( (2x x ll1 )I )

Sx) dx= j(It + W In C - j JIt ('7.2'1)
C x

where c is a small positive quantity which approaches zero , and

1(1) $ I -r(x) dx (7. 28)

14 2 I
4112) $ L I i x 4 rlx) Idx ('7. 29)

44

1) (2)r~x

We now proceed to the evajuation of J]')and I 2

j(1) -rlx) dx = S -rlx) 1  x- dx
14 x x a x r(x)

1 iM fy

+) 1are in * + no0 (1) - ! x t d o n r yt

I) Sagrebin did not include the, .X" in the denominator of the integrand.
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where we have used partial integration, the substitution y - and the fact that
X

1 -r(c)
-= w + 0()£

Remembering that S d x In x - W + r(x)j + a constant and

disregarding terms 0 (c) (of the order of c), we have

/-1 +w+ In I - w + V2 - 2w +
le 1 +-o WF

2 4'
+ w In 2 - Ine= -1+cos 41 2sin--1W + 22w 2

+ cos *) In (1 + sin -) + 0 - cos *) In sin - In c

Thus letting c approach zero:

+- 1 + cos * + 2 sin * (1-cos *) In sin
2 2

(1 + cos V) In (1 + sin -- ) - cos * J(2) (.30)

It remains to evaluate /2). It is not possible to express this function in terms of

elementary functions, but it can be transformed by the substitution x - and by
y

partial integration:

J ( 2 ) In $- (I - Wx +o r(x)fl dxz

0

1 dx

y x y

z - (In --- (y - W + r(y) In y ) dy.

= [-I 2 y+ in y In -- (y - w r (y))
21

1 1
1 (- (y---) In y dy
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Thus
j2) Li1 --- L (4,) ('7. 31)

where L (I) is given by the equation:

t I 1
L ( 4) = I (-- - ) in x dx (7.32)

The term Ij-- is included to make the integral converge at the upper limit. Thus the

expression for ( 2 ( I) now reads:

(* ) = - + cos * + 2 sin+-- (1 - cos *) In sin

(1 + cos *) In (1 + sin--) + cos 4' L (4') (7.33)

We now make a closer study of the function L (t'). In the limits for W = + 1, that

is, = o0 or 1800 , we may compute the exact values of L (9) as follows:

#= 0; = 1

L(0 = - (2)o0 - In (1-x) dxS X
0

By series expansion we have

I n- n-i
L = ( -- )dx dx

n= n nal no

2
n=1 n 6
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2. * =180, w - 1

L (180 ° ) I . in (1+x) dx
0 X

L(o) + L (18° 1 ) = I In (1 xldx
0 X

2
Making the substitution x ; we have 2 In x = In t and

dx I 1 dt

x 2 t

Thus

(o) + L(IS0 ° ) =,TL(o)

2

L(IS0o) - L(o) =L(8 "2 12

The derivatives of L(4) can be obtained explicitly by differentiating the terms

under the integral sign with rcspect to # (see 7. 32):

dL(*)= d L() - - sin 4 L (7. :34)
d I dw dI

&L.v x In XL - ) dx (see '7.32) (7.:1.)
d w 1 r 3(x)

But

a I x

ax r(x) r(x)3 r(x)3

thius,

x = 8o 1
3 W

r(x) 3  r(x) 3  Ox r(x)

2 2_ =_ r(x) 2  2wx - x = 1 x x(w-x)

rlx)
3  r(x) 3  r(x) 3  r(x) rx) r(x)3

1 wx 8

x r x - -

r(X) r(x) ax r(z)
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This gives

L' w Inx dx + x 2 dx + w S x In x dx
1 r(x) 1 r(x)3  1 ax r(x)

00

5 In x dx
1 8x r(x)

L dx + w 2 L+ 1 x In x j-w in x. dx
1 r(x) r(x) - I r(x)

ci~ Cho

- Fin " x + dx

1Mx L- r( X) 1 r(x)x

2 00ln
L + [x n -x -wx-9i r(x)

r(x) x x 4
1

Thus

(I-cw 2 ) L = w In W +2= + I n I W + F 2w

2 1-w

= in (s + s2 ) + In (s + s2 ) - In s2 = (1 + 'a) In (1 + s)

(I - 'a) In s

where

S = sin 2

We have now

I 1 1
L = - In (1 + s) In s

and

- - 2 s c Ll - n s - -In (1 + s)

d* c s
where

c= cos 2
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Thus the formula for dL() is:
d*

dL(.*)_= ig .. !I '- 4'I 1+

tg* In sin - cot In (I + sin.) ('7.36)

d I 2 2 2

This formula is differentiated once again:

d2L(4) 1 1 4 1 24' I 1 ' ,_I - cosec + cos ec In (lJsin4)+-- - .
dir2  2 2 2 2 2 2 '2

In sin ± :7)
2

We now turn to the evaluation of the function (p3 (') given by (7.12).

1 1 1
E3t I E P E ---- Pn *'

2n+3 2 n + n

3
Putting k = - and x = 1 in the general formula (7. 18) we have

I
3-) = - 5 ( -2- - wx 1) dx

2 2 o -T r(x)
x

That i , ) 1 . VT dx 1 (7. 38)

2 0 V 2x x2  5 3

Thus It is necessary to compute the integral

22( *) o ± S , V -dx
2 0 V1 - 2xw + x-

Substtuting -- t g 4 wt' obtain
II

2 (*) V' V

20 cos -  - 2 Ig- tg 4

Cos ,F - s 7
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from which we have

2 tg 2 d4

2 o 1 k2 sin 2  P

where
2 1 I'

k =-- (i + w) ( + cos4) or k cos. (7.40)

However this last integral can be expressed as follows:

1.2 tg "2 dt 2 2 2
2 2 = g - k sin P +

2 1 ksin2 2 o

71

T- 2d o, V 1 k 2sin 2 , d o
o I - k2 sin o

which can he expressed in snorter notation as

= sin----K (I2) - E() ('7.41)

where K (*,) and E (4) are complete elliptic integrals of modulus = cos
2

Thus, finally

t) sin- .+-K( f) - E(4') - o- t os (-- (7.42)

As we are going to require the first and second derivatives of f3(X) in the following.

we state here the corresponding derivatives of K ( a) ad E( f):

d- E 1 - K) (7.43)

dK 1 E
- X (I -. 2 * K) ('7.44)
dk k 1 - k

Formulas(7.43) and (7.44) can be found in many standard tables ( see Dwight:

"Tables of Iftegrals and other Wthematical IDta". 4th Ed;' 1961. Macnillan Company,

New York.)



Now

dE dk dE 1 $ dE
d$ d d h 2 sn2 -j k

Thus,

dE +(K E) (7. 45)

and similarly

dK I (7. 46)
d =- tg- K - cosec $*E

Differentiating once more, we obtain in the same way:

dE- I 2l 1 ._*( . 7
d E se -K - ( + sec ) E (q.47)

d *2 4 2 4 2

and
2

d K 1 2 *K cos ' (7 48)
d -g K + (7.2 '2dl' 2 4 2 sin $'
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EXPLICIT EXPRESSION FOR THE FUNCTION Z (60* X ,6, X).

The dominant function in the expression for Z is the well-known function of Stokes:

S(9) -cos'ec-+ I 6 sin-- 5 cos 9 3 cosIn(sin-f-•
2 2

.2+ sin j-) (8.1)

Considering the equations (6.8) and (7. 1) we can express Z as follows:

z (e o . X0 1, X) a S + e f(, - e ". (',; 6o. , . X) +
I 0

+ 2q (t) q (8.2)
where we have

f(t) =- ) 2 ) (8.3)

The explicit expressions for f(9) and ' (* can be found immediately by the

aid of formulas: 7.6, 7.8. 7.14, 7.22. 7.33, 7.42.

2 1 9 84 9 328
f(9) = - j-- -- cosec -+ 1-5 sin 2+ -- 5 cos + +

11 3 9/
+ (L cos 9 -- +-) In (1 • sin )4

411 3 * a
+ cos *+-,,) in sin----cos # L(t) +

+ L K (9*) - - ( ) (8.4)

() z - 1 + 2 sin-- cos 9- (3 4 5 cos *) ln(1 sin-)
22

+ (3 - 5 cos V) In sin-.-+ 3 cos # L (9) (8.5)

2

To obtain the function i 3 , we need 02 (9), which can also be found easily

with the ai of die formulas 7.7. 7.22, 7.3a and 7.42.
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-1 14 n _I 63

+ 2, .2 -;- -I Cos I-n sn± + co * L-0

5 25 2 45

(-4 - co 4) In ( 1 sin---) +

25 25
3 137 4' 3

+ (- - -i cos L) In sin +-cos , (+s)

5 5

+ - si g (n8.0)

The derivatives oh 2(4') can now be obtained from the formulas 8.6, 7.36,

73' .*445 - 2

d____( ) 32 12 4 2 2+ sin 4' -- o sec

d* 5 2 25 24sin2

34 3 '4
4. (- sia -- -co ) In ( 1 4. sin- -)

3 1 '4

+ sin 4 - . t I +n sin

+ n L(4) 2 ta"!-K (4') 4'o (4') (8.2I)

d- . 21'1 8. 4' 202 9 1 24'

d[,, 2  5 125 25 2

3 2 1 1

Co + ToCOSe F n ICi

225 2'
3 2 3 2

Cos L'- + ( secin [2 ci+-
22

cos 94--.-- in (1ec 1 sn(n 8

- - cos 4' L (4') +j (sec 2 --- 1 ) K (4') - [2 cosec24 4.' 1 E(4')

(8.8)
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We still have to evaluate the derivatives of the angular distance V with respect
to X0 . These derivatives can in principle be obtained from the spherical cosine theorem

0

but are mlore easily found from three fundamental formulas of spherical trigonometry.

First, we make the change of variables B 900 - o ; B 9 0,

Mierv B is the reduced latitude of the point in question. The three fundamental formulas

are (cf. fig. 8.1).

sic sin A cos B sin (7 - X ) (8.9)

sin * cos A = sin B cos B - cos B sin Bo cos(X-X ) (8.10)

cos sin a sin B cos B cos c (X - X 0) (8.11)

Fig. 8.1

P = the north pole

M0 = the fixed point

O A M = the running point

0A athe azimuth
0.

M
U The angle M PM Is equal to X-X

Fig. 8.1

Differentiating (8.11) with respect to X and taking (8.9) Into account we obtain
0

- sin A cos B (8.12)
0 0

0

Differentiating ouc more:

2
= - cos a cos A - (8. 13)

ax 2  
o 0 aXo 0
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8A
The derivative -2 can be obtained from (8.9) and (8. 10) after differentiation:

Ox
0

Cos V sin A + Cos A sin *--o os 8Cos (X-X
0 0 aX a
0 0

cos4*CosA - -sin A sin * '- = - cos sin sin (X-\)
oX 0 OX 0 0

0 0

From this we have

sin ' aX 0 cos C Sin aosin Aosin(X - X 0 )- cos A Cos (X - X o

But we also have:

cos (3600-A = - os A Cos (X -X o ) + sinA cos (X- sin 8

Thus

CA cos B cos A

aX sin
0

When we substitute this expression intor (8.13), we obtain:

a if cos A cos 8 cos A cos A
o o (8. 14)

OX2 sin ,
0

Regarding the function #3 as a function of the four variables So fi. Ao, A we obtain

13(1; 0o . S. A o , A) = f (t) sin 2A cos2IS

f 2(t) cos A cos A cos O cos S (p.15)

where d 2
f (4) = 2( (8. 16)

dir
2

f d9 2 () 1 f)

2( sin 4, di
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The expressions for fI and f2 are determined further by the formulas (8.7) and

(8.8). Thus we can write for the function Z:

Z ('; BoB,Ao,A) = S (*) + 2 a f( *) + 2q'(,)

2a If2( ' ) sin2 A cos ( - f ) cos A cosAc o cosB] (8.18)

where S(*) is Stokes' function and the functions VJ(*,). f(i'), f (t,), f2 are given
2

by (8.4), (8.5), (8.16), (8.1'7). The quantity e, is replaced by the approximation 2 a.

The function Z, as given by (8.18), is still apparently a function of the variables A and

8 of the running point. In reality, Z is a function of the angles *, and A only if
0

we assume 8 to be given.

From the spherical triangle PM M we have:
0

cos 8 cos A = sin ' sin 8 - cos 0 cos ' cos A (8. 19)

Introducing (8.19) into (8.18) we obtain

Z( 80; 0 , A o ) 0 S( +')+ 2a f(') + 2q?'( ) -o o

2a [f 1 (1 sin 2 A cos2  o 0 f 2( ') cos 8o cos A

sin * sin a - cos 8, cos cos An)] (8. 20)

Thus we can write the expression for the height difference N ) at the fixed

point, determined by (0 X 0 ), In the form:

N(O) = .a $ AgZ (B0; 4. A) sln'dt d A (8. 21)

4 1 0 0

Using the variables 4,, A the surface element do = sin4' d4, dA o .

The quantity A g* Is connected to the gravity anomaly Ag by the equation

2

Sk = , + .e1 sin 2 Ag A 8 g (I +e sin2 .

Ag (1 + a sin 2 8) (8. 22)



where s in 2 8is given in terms of the coordinates of the fixed point and the angles

1and A by the relation
0

sin 8 sin 2 cos* +2 sin 8 cosB8 sin # cos # cos A
0 0 0 0

(8. 23)

The Integration in (8. 21) is performed on the circumscribed sphere with the

greater half-axis as radius. Our problem is now solved.
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CONCLUSIONS.

We may now write equation (8.21) in the form

11 2 7

N(o) = . $ ( Ag'z( *)(#; Bo,A 0,,A d'4d A ) (9. 1)
211y o o

The function Z( 0 ) is given by the expression

Z (A , V, ) = F( *) + 2a [ - FI(*') sin A cos 2

+F2 cos Bcos A (sin # sin Bo - cos B8 cos I cos Ald

+ 2 q F3 ( IV) (9.2)

There we have

F(') = -sin' S('#) (9.3)

2
Fol41) -L -s In f() (9.4)

Fl ' -- sin If f 41,) (9. 5)

F2 14) -- sin 4'f 2 1It) (9.6)

F (1) = sin , (9.'7)

3 2

F(t) is sometimes called Helmert's function. Thus we have as our final

formula for N °):

w 211

N(o) = a 1 $ &g F,. ,in 2] [F(,. f) + ,2,,, -
2ay0y o o

sin A cos F2() cos A cos0 (sin 4 sin 8 -

- coS Aocosa cos ')}" 2q F3 (4)] d #dA (9.8)



2

or with the same degree of approximation:

it

N( o )  a A g Z(Bo ; ', A ) d4dA (9.9)
2ny o o

where

Z(O)(0 ; ,Ao) F( ) I + a sin281 + 2a [F(,) -

2 2

-F (M) cos 8 sin 2A +10 0

2 2B

+ I F (*) sin 8sin cos A - F (*) cos 2 cos 4,cos2 A

+ 2q F3 (4')V (9. 10)

Here s in 2B is given by (8.23) as a function of o , . , A. The quantities in

(9.9) and (9.10) are defined as follcws:

N(° ) = the height difference between the geoid and the ellipsoid

a = the great,; half-axis of the ellipsoid

q = the quotient between centrifugal force and gravitational force at the equator

Y = the gravity of the theoretical earth

8 = reduced latitude of the fixed pointo

VTr = angular distance between fixed point and running points.

The anomaly Ag in (9.9) Is regarded as a function of the reduced latitude and the

longitude. The functions F, Fo , FI F 2 , F3 occurring in the expression for

Z( ° ) (,a 0 , A ) are given by the formulas (cf. 9.3 - 9.'q, 8.4, 8.5, 8.16 and

8.1'?).

F(*) sin +- -3.-cos ,-

" cos *' In (sin I + sin (9.11)
2 co 2+2
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(*4')1 1 1/ 42 / 164

Fo = sin -" -cosec T+ -5- sir - -5 cos .
0 T 275 125

11 3(L-cos I - ) In (1 + sin )+ 1( cos + In sin-2

3 101 2

+ -0 cos * L(' .K(,)-. E(*) (9. 12)

[ 0 5= sin ' -sIn - I - cos + - 1+s n

5 2 T-2 Cos .701 s in-2

49 3 3 1 3
+ (-9cos 0 0 + - -. ). Ln (1+ sin---) - -. cos rL(,) -

50 0 0 in2 0
2

E( - cos in I K(+) (cos I + +

COS 2

cot-!49 - 3 * 3 1
coz- -- 2E(,1-"wj 4 (-c s cos * - cos 2

cos--

sin- *In sin - (9. 13)

16 6 = 1 1
2 = in * - 2 Cos 2 - i5 cot-.+

ls in--

17 3 1"3 " -i - o ) I 1 * 2 ( i ,

tg In sin -F 0 sin * L ( +) y tg--K(*) +-cot* E(M)

(9. 14)

F3 (*) = +i - 2 sin-L- Cos + (3-5cos *) In sin -2

-(34 5 cos *) In ( I + .in-L--) 4 3 Cos # L(* (9.15)
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In the last four formulas K (t) and E(1) are complete elliptic integrals of the

first and second kind and of modulus cos

Thus,
11

K(l) = (9. 16)
o 1 cos2- n. 2

1

( 21' 2
E(1) = ) cos - sin ( d ( (9. 17)

0

L (i) Is a new function, given by the formula:

I
r *1 1

L(1) = ) (- ) dx (9.18)

o V1 - 2x cos * x2  
x

(cf. formulas 1.34 et scq,)

This function can be tabulated (see table below) for some values by the use of its

derivative

dL(1) tg L n s In (1 + sin 4) (9. 19)
s-T TI in- - cot-I sin"

dIn 2 2 2

2I
and the fact that L (o) =

6

After evaluating N ) according to formula (9. 9) (in principle for every point of the

earth) we must compute the correction 4
1). This can be done by replacing A g*

(= Ag + Ag sin 2B) in (9.8) or (9.9) by 2 cos 2B (cf. eq. 3.9 -
a

3.11 and 1.1).

It will be sufficient to take into consideration just the term F(1') from (9.8) or

(9. 9). As we neglect terms of order d2  we do not need more than this term of our expression

for aN 1 1.

Thus, a 21

N 1 ) = a & $ Ag() F(1) d*dA (9.20)

21y o o

where

Ag = 2 cos 2 (9. 21)
a
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We have now solved our main problem, and it remains only to test the results

on a suitable model. The solution is given by the formulas (9.9) and (9.20).

N = N(0) + a N (9. 22)

The new functions are compared to Sagrebinos functions in a diagram below.

A special test of the function p2 has been performed, by directly summing the series

on an electronic computer

2 -
P  P (cos ',)

n=2 (n-1) 2  n

for different values of '. The results obtained agree completely with those found from

the explicit formula (7.33) for ( 2(,
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THE TEST MODEL.

For a simple test of the resolvent function Z, the following "model earth" is

designed (Fig. 10.1).

The theoretical gravity y is obtained from the requisite massdistribution to make the

ellipsoid an equipotential surface. The "formula of Bruns" then holds for y:

1 ay 1 1 2( 2

y On Pm Pn Y

To obtain a disturbance potential T with the gravity centres of the theoretical

earth and the actual earth coinciding we put four unit masses into the ellipsoid In the

plane X = 0, 1800. Furthermore, we put a negative mass of -4 units in the centre.

The radius of the circumscribed sphere and the gravitational constant are taken to be

the unity.

Thus 4 1 4
T = E - - - (10.2)

=1 r 0 r oj

g . -a T_+ T (10. 3)
3n y On

We know the disturbance potential a priori, and therefore we can simplify the

computations to one single step. This means we have to use the boundary condition

(1 q)-- .OT Ag (10.4)

where

T = the total disturbance potential

Ag* the gravity anomaly for our resolvent.

Furthermore we have the relation

Ag = 49 *(1 2a sin 2 8) 2 (10.5)
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substituting this a g into the resolvent formula we obtain

it 2W

T = S gZd~dA (10.6)
0 0

This value should coincide with the value from the Newtonian computation.

The computation of A g.

Starting from (10.2) we have:

4S8 T 4 a 4__ r. 0 - - - , -- -- 1 o
E - - z + o4 (10.7)im a an r on i- rj 11 r1 3 r o

Symbols
r.7 = the vector from the origin to a point on the ellipsoid

- = the vector from the origin to a disturbing mass

r the length of a vector
--- -r +"

r i rto ro
n = the outer normal of the ellipsoid (unit vector).
' * unit vector

Thus we have to investigate the quantities (7 - T ) and. 1" r).
01 oj

The normal of the ellipsoid is given by the fornula

-
a = roj + a sin 2 (10.8)

where Bi is the unitvector of the tangent (towards the north pole).of the sphere at the

reduced point corresponding to J.

Thus

(;'r ) " rj 7 a,, 28(5 j ) - ro 01a (10.9)

as ( 'oj) * 0()

a. (Toj + asin 28~~ (r~ +
01'sn " i ji J 0 (10. o

.9 o, in U i(DJr od) (10. 10)
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(r r - ) = roi cos v (10.11)

where v1 i is the angle between the vectors r oi and oj

The quantity ( 'r o i) remains to be found. In Cartesian coordinates

(x,y.z) we have

.o Cosa I + z sin 8. + 0(a) (10.12)

B -R . sinS. z cos . + 0(a) (10.13)
J J J J

Here

R x cos X+ sin X. (10. 14)

= -Cos a sin 8.cos (X.-X ) + sin. cos a4 0(a)
j 01 1- o s J 1 1

We do not want the quantities B and ). to enter into the final result, since we

integrate over * and A (=Ask). Here 8 k- X k and Oil X i are given beforehand

and may enter explicitly into the formulas for Ag and T.

We have the formulas

sin * sinA a (sin XcosX - sin X cos X) (10.15)
Ak jk coj k k

Cos #jk - sin sinB k + cos B cos s X cosXk +

sin X sin X k)" (10. 16)

(cf. eq. (0.9) ad (0.11)).

From the equations (10.15) and (10. 16) we can solve ft the quantities

Cos a Cos~ ( c ) and cos asinXi (as

Cos #k sin Ak sin a
ik kCos X k sin *Asin A jksinI Xk (10. 17)

c k k



-50-

cos ,Vk- sin 8bksln 54s. C - sin X + sin *jsin A coS (10. 18)
J Cos ak k jk jk )L

A jk= A and 'jk = ' are the integration variables.

Furthermore

cos t - sin S k sin a sin tcosA - sinBj cos a k

Cos ak  sin Bk

(cf. (8.10) and (8.11))

This expression can be used when cos Lk approaches zero.

By permutating the angles

0 0
90 - B.-- 90 - B

- X -A in (10. 16) we obtain

sin B. = sin k Cos + CosBk sin # cos A (10.19)

Since

-90° 0 B < 900 we have.simply

Cos = (always positive) (10.20)

The'keduced" angle ti, between the vectors r and 7 is given by

cos sin . sin in iB +c o Cos XIs sinX)d (10.21)

To obtain the physical angle v in (10. 11). we have to replace Bi by

a --!sin 20i) and analogously for 5j.

Thus by series expansion

cos v Cos (ij ( a(sin Bi +sin 25)) - 2aslnB sin A

(10.22)
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Expression (10.15) reduces to

cos B .sin 8.
(. ro) C os (c cos Xls.sinX) + sinB cosB

Thus

a sin 2 8( oi 2a sinS (sin 8 1 cos2a - cos asin 8

(cjcos Xi + s sin Xi)) (10.23)

We have also

2 2 2
r = r* +r -2r *r cosy (10.24)y oi oj 01 oj vij

From the equation of the ellipsoid we have.

2 2
r.2 = 1 - 2a-sin 28 (10.25)

2 2 z

x + Y 2
1-e

(z axis along the axis of rotation)

where e is the first eccentricity of the ellipsoid.

2 2 2 2 2
x + y + z = 1- 2a z + O(a z= sin + 0(a)

Now we can write (cf. 10.7)

4o T'j 
4 4 1

SM - 4 )= - E - (roj-roi cos v i-
an W *r3 r 3 oJ 2  i=I r J3ni ori oj roj .

2a sin a (sin Si cos 2 j- cos isin j d(i) (10.26)

where

dil a cj cos Xi  + s sin XI

The formulas given here contain all the information necessary to test the 4modified,

Sagrebin resolvent by the aid of an electronic computer.
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RESUL'I S FROM THE TEST MODEL.

Test N:o 1

a = 0 600 K-= 15 °

Cosnpartuint: d 8 = 1 50 dX = 1 50

Newtonian T = 0. 818'70

Resolvent T = 0. 84866 (Stokes)

Error +0. 02996

Test N:o 2

a - 0 8 = 600 X = 150

Compart nrsr: da = 5 = 50

Newtonian T = 0. 818'70

Rcolvent T = 0. 81'790 (Stokes)

Error -0. 00080

T.st N:o 3

a = 0.001 8 = 60 0 = 15°

ComJpartment: d8 15 0 dX 150

Newtonian T = 0.81962

Resolvent T = 0. 85102

Error +0. 03140

Test N:o 4

a = 0.001 8 = 600 X=15°

C o m p a rt n ,: d 8 = 0 d = 5 0

Newtonian T = 0. 81962

Resolvent T = 0.81998

Error +0. 00036
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Conclusions fronm numerical tests.

It has been possible to verify the principal formula v2 x) by the aid of a

numerical series expansion on an electronic computer. This calcltation has proofed

that the new derivation is correct. Tise final resolvents includes a number of functions

which all are derived from this principal formula. The whole assembly of formulas is

verified by the aid of the test model. The study of this model has shown that error in

the computations is decreasing with approximately forth power of size of the integra-

tion c:ompartments. Already with a compartment i 1 0 x 10 the resolvent solution will

fit better than 10" 5 of T. The new resolvent tor the ellipsoid has given an error which

was only half of that corresponding to the same solution according to Stokes for a r.al

sphere ( 50 x 50 ). One can expect both formulas to have approximately the same

accuracy.



COM/PARISON BETWEEN SACREBIN'S FUNCTIONS AND THE

NEW FUNCTIONS.

Sagregin:

4 1 1' 12 2 253
Foi') sin , n cosec- sin-.--cos 4' +

o3 2 2 2

+ In (sin-- sin + " Cos * 1(sin-+ sin
2 50 2)

+ - K ( E') E (4)
0 2

Corrected F (') function:0

F ( si) 1 1 # 42-
o -3 oc( T +Tc2-c 5 sin-

+ - cos 4 •(-- cos -- )n ( + sn--) +
125 50 10 22

1 1 3 31r- cos * + In sin- + cos # L( *) + -K( )-LE( 4)
co 4'+ jj)i 2 10 50 25

In a similar way the three remaining tunctiom FI(t) F2 (*) and F3 (4') are

changed.

Sagrebin:

(*)  = 1.- 2 sin-L-+ 2 sin - -In (sin-L + sin 2

22 2 2 i 2

Correct function:

( ) -1 cos +'. 2 sin .- (1-cos4) In sin

I + cos 4'1 In ( 1 + sin -!) - o 0 (2)

where I o
(2) . 1 C 1 l+)lnxdx
1 0- '' d- r(x) x

etc.



From a theoretical point of view the new results seem to be of the greatest

importance since hitherto modern geodesy is based on the fact that the errors in the

generally used Stokes approach could be determined according to Pizetti and then

finally according to Sagrebin. However. Sagrebin has shown that Pizetti's method is

insufficient to give any real information. Sagrebin°h own theoretical study is probably

one of the most important in modern geodesy, in spite of the fact that it is incorrect

in all new functions.

It is supposed that some of the fundamental questions in geodesy can be solved by

the aid of this new study.



TABLE OF FUNCTIONS (15)

x F(X) FO(X) FI(X) F2(X) F3(X)

0
0 1.0000 -.5000 .0000 -.5000 .0000

15 1.1121 -.3618 -.1031 -.7901 .8928
30 .4736 -.0683 .1625 -.7924 .7923
45 -.3070 .1793 .5495 -.6429 .1359
60 -.8957 .3103 .8677 -.4053 -.6297
75 -1.1049 .3137 .9841 -.1365 -1.1127
90 -.9142 .2197 .8598 .1128 -1.1150
105 -.4500 .0808 .5531 .3025 -.6825
120 .0773 -.0487 .1872 .4066 -.0528
135 .4578 -.1281 -.1034 .4152 .4705
150 .5590 -.1391 -.2275 .3347 .6590
165 .3702 -.0879 -.1713 .1859 .4574
180 .0000 .0000 .0000 .0000 .0000

F(*) = - n in# 1 . 2n+12sn sIn 4 -I Pno
4

s )

F o() = 1) sin * (-o + 2 (
0 2 2 2

2D n ( 2 n + 1 ) c o ( 2 1 )

in n=2 (2n.l) P(cos f) + 2 (n1)2 p n(cos
n=2 (-1) (n+3)n=2 (n-i1) ( 2 n43)

1 1 d2 0 2 (f)F1 (9) 2- sin f1 (t) = -sin * -2d 2

1 1 d 0(f)
F( ) = sin -2( -

1 1 CD (2 1
F- sin s in - P (cos 9),n=2 (na-) 2

n



TABLE OF FUNCTIONS ( )

X F(X) FO(X) F1(X) F2(X) F3(X)

0
0 1.0000 -. 5000 .0000 -.5000 .0000
5 1.2165 -.5055. -.1071 -.6567 .4613

10 1.2146 -.4456 -.1288 -.7409 .7364
15 1.1121 -.3618 -.1031 -.7901 .8928
20 .9410 -.2663 -.0407 -.8123 .9460
25 .7224 -. 1666 .0504 -. 8120 .9080
30 .4736 -.0683 .1625 -.7924 .7923
35 .2100 .0242 .2881 -.7561 .6140
40 -.0543 .1076 .4195 -.7055 .3894
45 -. 3070 .1793 .5495 -. 6429 .1359
50 -.5371 .2375 .6715 -.5706 -.1292

55 -. 7357 .2813 .7792 -. 4907 -. 3895
60 -.8957 .3103 .8677 -. 053 -.6297
65 -1.0121 .3248 .9330 -.3165 -.8369
70 -1.0820 .3255 .9723 -.2262 -1.000
75 -1.1049 .3137 .9841 -.1365 -1.1127
80 -1.0821 .2908 .9684 -. 0490 -1.1696
85 -1.0169 .2588 .9262 .0346 -1.1696
90 -.9142 .2197 .8598 .1128 -1.i150
95 -.7804 .1756 .7726 .1843 -1.0103
100 -.6230 .1286 .6688 .2478 -.8630
105 -. 4500 .0808 .5531 .3025 -.6825
110 -. 2700 .0342 .4307 .3475 -.4794
115 -.0916 -.0095 .3070 .3823 -.2656
120 .0773 -. 0487 .1872 .4066 -.0528
125 .2292 -.0822 .0761 .4201 .1475
130 .3577 -. 1088 -. 0219 .4228 .3249
135 .4578 -.1281 -.1034 .4152 .4705
140 .5258 -. 1396 -. 1657 .3975 .5773
145 .5596 -. 1432 -. 2073 .3704 .6409
150 .5590 -.1391 -.2275 .3347 .6590

155 .5251 -.1281 -.2271 .2913 .6320
160 .4608 -.1106 -.2075 .2413 .5631
165 .3702 -.0879 -.1713 .1859 .4574
170 .2589 -.0610 -.1219 .1263 .3222
175 .1331 -.0312 -.0633 .0638 .1664
180 .0000 .0000 .0000 .0000 .0000
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A P P E N D I X.

TABLE FOR THE RESOLVENT OF AN ELLIPSOIDAL

SURFACE OF REFERENCE.

The table can be used for determining the height over the geoid in the following

manner.

We start with formula

ao) 2'11s 2 2

N 2° 1 y - 'a g [ + -(sin 0cos + 2 sinB cosa sin *cos
0 0

cos A + cos 8 sin 2 cos2 A (F()+ 1F04-1F( ) sin 2 Acos +

1 2F 2 ( )Cos A cos -sin #sin 1 2F 2 ( #) cos A cos 2o cos 4+

4 2q F3 (*)) dgdA E3.0]

This formula is transcribed

N( ° ) C $ $ Ag I cor] (- aF()) dS 3

whereVaI

corra 0 (12)

F.1 (#) F (t) def.

{o(l 2 ) v 0, 1,2,3
a
V V =-1

Every av Is afunction of

E a reduced latitude for the fixed point,

f a angle between the fixed and dhe running point

A z azimuth for the running point (measured In he orthonormal

system determined by the fixed point).



We substitute now for [13.1] Lhe equivalent:

N 0 =CS Ag F()[ I v v 1 1 + carr1  dS 13.2]

where

F ( - F_ I') is independant of the position of the fixed point. The

factor (I + corr) E(avF):F(*) = I + G(8o; *, A) 0 (i 2 ) is near to I

for any point on the ellipsoid and equals I for every point on a spherical surface. This

fact enables us to use the following approximation formula for N (0)

N()= C E E Agij F(.*)'K(B0 ; 'I, A j) A *' A j

ij

where the magnitude of K in accordance with our considerations above is near to 1.

Now an appropriate network for a. and A is defined and we have in ourt t

example chosen:

*i = i 5 °  i 0, 1 ..... 36

A = j" 100 j 0, ...... 36 for every I

As reduced latitude for the fixed point we have taken B = + 300. Now we haveo.

computed the values of K(30: *', A i) headed under * , furthermore the reduced

latitude, 8 ij, .for ('i, A I) in the orthonormal system determined by the axis of the

ellipsoid and the difference in azimuth, Iij - Io . between the fixed and the running points In

the same system.

The system of equations for the coordinate transformation is:

cos BDi cos (llj Itj cos t, cos B0 + in cosA aJsln B

Cos Bij sin (lIJ 10P sin *I sin AIj

sin Bj = cos *i sin4o - sin cos Aii cos ao

The table is constructed so that for any point where Ag is giveb one can Set

an approximate value of the K-function. We have then to multiply K with its cone-

sponding value of F(4,) and with that element of surface, that the actual point Is In-

tended to represent, to get the actual partial sum of l3.3  (Note that F () 

sin ' S (f). where 5 (t) is Stokes" function, and that therefore "the element of

surface" lacks the sin 4'- factor).



Example of tabulated resolvent values according to (13.3).

B ETA = Reduced latitude. L- L(O) = Longitude difference.

PSI1 5.0 BETA L-L(O) Z(O)/F(O) K(B, *S0 A t)

25.000 .000 1.0035
25.07 .9' 1.0035
25.29 1.89 1.0032
?5.64 2.77 1.0029

3.58 1.0025

26.72 4.29 !.0C21
27.41 4.88 1.0017

28.18 5.33 1.0014
29.01 5.63 1.0012
29.87 5.77 1.0011

30.74 5.73 1 ."C12

31.60 5.5?- 1.0013
32 .4 0 5.13 1.0C16

33.14 4.57 1.0020

33.77 3.,86 1.0024
34.30 3.02 1.0027
34 .(8 ?.08 1.0030
34.92 1.0 .0032

35.00 3'O.00 , 1.0'33

34.92 358.94 1.0032

34.68 357.92 1.0030

34.30 356.98 1.0027
33.77 356.14 1.0024

33.14 355.43 1.0020

32.40 354.87 1.0016
31.60 354.48 1.0013

30.74 354.97 1.0012

29.87 354.23 1.0011
29.01 354.37 1.0012

28.18 354.-57 1.0014

27.41 355.12 1.0017

26.72 355.71 1.0021

Pn.12 356.42 1.0025
25.64 357.23 1.0029
25.29 358.11 1.0032
25.07 359.04 1.0035

25.00 .00 1.0035
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PSI- 10.0 'JTA L-L(0) Z(o)/F(o)

2C. 00 .00 1.0059
20. 14 1.84 1.0058

20.55 3.64 1.0056
21.2^1 5.34 1.0052

.16 "'.92 1.0047

P .3. 31 8.33 1.0043
24.,6 9.52 1.0038

2,, .17 10.48 1.0035
2 7.79 11.15 1.0032

29.50 11.51 1.0031

31.23 11.54 1.0031
32.95 11.21 1.0033
3L. 58 10.52 1.0030

36. 09 9.47 1.0040

37.42 8.08 1.0045

38.51 6.37 1.0049
39 9. 4.40 1.0052
39.83 2.25 1.OC54
40.00 3',F.00 1.0055

39.83 357.75 1.0054

39.32 355.60 1.0052
38.51 353.63 1.0049
37.42 351.92 1.0045

36.09 350'.53 1.0040
34.58 349.48 1.0036

32.95 348.79 1.0033
31.23 348.46 1.0031
29.50 348.49 1.0031

27.79 348.85 1.0032

26.17 349.52 1.0035
24.66 350.48 1.0038
23.31 351.67 1.0043

22.16 353.08 1.0047
21.23 354.66 1.0052

20.55 356.36 1.0056

20.14 358.16 1.0058

20.00 .00 1.0059
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PSI- 15.0 BETA L.-L(O) Z(O)/F(O)

15.00 .00 1,0080
15.20 2.67 1:0079
15.80 5.28 1.0076
16.79 7.77 1.0072
18.14 10.08 1.0066

19.81 12.17 1.0061
21.77 13.97 1.0055
23.97 15.44 10051
26.36 16.53 1.0048
28.88 17.19 1.0046

31.46 17.39 1,0047
34.03 17.07 1.0049
36.52 16.19 1.0053
38.83 14.75 1.0058
40.89 12.71 1.0063

42.62 10.13 1.0068
43.91 7.06 1.0073
44.72 3.63 1.0075
45.00 360.00 1.0076
44.72 356.37 1,0075
43.91 352.94 1.0073
42.62 349.87 1.0068
40.89 347.29 1.0063
38.83 345.25 1.0058

36.52 343.81 1.0053
34.03 342.93 1.0049
31.46 342.61 1.0047
28.88 342.81 1.0046

26 .36 343.47 1.0048
23.97 344.56 1.0051
21.77 346.03 1.0055
19.81 347.83 1.0061
18.14 349.92 1.0066
16.79 352.23 1.0072
15.80 354.72 1.0076
15.20 357.33 1.0079
15.00 .00 1.0080



GRAVITATION

Historical

The study of gravitation has attracted an exceptional amount of interest in recent

years. The foremost reason for this is found In the rapid development which is occuring

at present in the disciplines connected with geophysics. The problems connected with

satellites and robot weapons have accented this interest further. The general manner of

development s briefly as follows.

In Sweden and the other "western countries" developments have previously followed

the classical representation of STOKES. In the application of this theory one has sought to

obtain gravity material by direct measurement of gravity in various places over the whole

earth which then was applied to determine the so called geoid. The auxilliary surface

can be said to constitute the gravitations model earth. If the continents were cut through

by a network of canals, the mean water surface thus obtained would define the geold. One

difficulty with the application of STOKES' formula for the determination of the geold is

that no masses can lie outside the actual geold. In the practical application of STOKES'

theories one is therefore forced to eliminate by some artifice the masses which lie outside

the geoid. Western scientists have not been successful in solving this problem. At the

same time, many of the works which have been carried out toward this goal will certainly

be significant in various other connections even if they do not succeed in the solution of the

main problem. To correctly understand the older manner of consideration it can be useful.

to give the historical development. in the triangle measurements In.lndia. J. H. PRATT in

1855 found large triangle misclosures which were measured on the surface of the earth In

the vicinity of the Himalaya mountains. From this he drew the conclusion that the large

masses of mountains had deep "roots" with less density than the surroundng area so that

the visible outer masses were completely compensated at a lower level. In such a manner

he could assume that two equally large land areas always contain masses of equal size., The

assumption for this is only that the two volumes compared include all the masses down to

the earths inner surface of compensation. The hypotheses presented by PRATT have led to

a special uiscipline which is called "Isostasy". Of great significance for the application of

isostatic hypotheses was the determination of the "depth of compensation" which is required

to obtain equilibrium among the masses. On this point views differ. In his own theories



PRATT assumed that the depth of compensation was everywhere constant and many writers

said that this depth should be measured from the unknown surface of the geoid. The Ame-

rican JOHN F. HAYFORD was the first to apply'PRATT's theories to a large project and he

chose to measure the depth of compensation from the physical surface of the earth which in-

troduced the complication that the surface thus determined was not in hydrostatic equilibrium.

Since, however, many scientists considered it to be a necessary condition that the surface of

compensation should be in hydrostatic equilibrium, they chose to reckon the depth of com-

pensation from the geoid. It is interesting, however, that to a large degree the schools ob-

tained the same result: namely that the depth of compensation is approximately 120 km. At

the same time as PRATT G.B. AIRY presented a somewhat more detailed hypothesis concer-

ning the interior of the earth. AIRY also accepts in principle the isostatic concept, but makes

it more precise by giving the outer body of the earth (sial), a density of 2.87 which floats

on the inner layer (sima) which has a density of 3. 30. The continents should then more or

less float like icebergs on the interior masses of the earth. If these theories were correct one

could find in them a good basis for the ideas which were later presented by the German. A. L.

WEGENER. According to him the South American and African continents were at one time a

single continent, but have since then separated. This hypothesis of the movements of conti-

nents has been much discussed, but no successful geodetic measurements have yet been carried

out which could prove or disprove the hypothesis. We do not know the distance at the present

time than to approximately several hundred meters and the movements which are supposed to

occur probably are essentially less. Therefore it will be some time before this theory can be

checked, if in fact this will ever be possible. The actual significance of isostasy is that it

offers the ossibility of reduction of the disturbance effects of masses lying outside the geold.

A disadvantage of the isostatic reduction method is that it s very tedious, but in spite of this

isotatic methods have come into wide use. For example, in Sweden, Rikets Ailminna Kart-

verk has performed a computation of a suitable geold for Sweden with the aid of isostatic

reduction methods.

Among other theories for the elimination of masses outside the geoid one put forward

by the Russian scientist M.P. RUDZKY in 1905 can be cited. He sought to eliminate the

disturbing masses by an imaginary transportation of masses of all the material outside the

geoid. In this original manner RUDZKY obtained a model earth which he considered to be

free of disturbing effects. A number of other theories followed and the state had almost

been reached in 1950 where each geodesist had his own theory for the computation of the

geoid.



The cause for this dilemma can perhaps be sought for alorg various lines. First and

foremost the situation was such that the various theories were often so coinplicated that it

could be difficult for any critics to find the correct points of attack. Furthermore all the

theories contained fundamental hypotheses concerning the structure of the interior of the

earth which were impossible to check completely.

It was therefore a scientific sensation of the first order when at the General Assembly

for Geodesy and Geophysics in Toronto in 1957, a paper written-'by the Russian scientist

M. MOLODENSKY was presented in which it was shown that the classical geoid is not re-

quired and that a mathematically correct method, free of hypotheses, developed in the

Russian language, had already been available for several years. Furthermore, this was gene-
rally applied in the Soviet Union. The situation is such that for a flat lowland the previous

theories can be applied when the effects there are negligible. MOLODENSKY had computed

the effect of disturbance masses on the plumb line for a mountain 4000 metres in height.

A correct computation showed a plumb line deflection of 50", while a computation according

to classical method gives a result of 15,4". It is seen that the older method does not even

give the correct order of magnitude.

The greatest significance of MOLODENSKY's work certainly does not lie in the purely

practical field. Above all, it is through the mathematical conicepts themselves developed

correctly and elegantly that assumptions are afforded for reasonable analyses of all the prob-

lems which are connected with the gravitational field of our earth.
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The mass M according to ("I also defines a so-calhed gravitational potential

W according to the relation

w = f S 2 dV (4)r

r = distance of the volume element

from the actual point

Ouantities: gal. cm. and kilogal-meters.

W

The gravitational potential is considered, unless otherwise stated, as a purely

mathematical definition. According to (4) the gradient to the gravitational potential is

gadW a VW ] f [ cos (, x) dV(

Cos (r, y)

As is seen from equations (2) - (5). grad W constitutes the acceleration which Is

caused by the actual mass. From this it also follows that the potential difference between

two points represents the work which is required to move a unit mass from one point to

the other. Generally, one can say that the potential according to equation (4) represents

the work required to move a unit mass from the actual point to infinity. This "absolute

potential" Is often comparatively difficult to obtain and in general one must accept a cer-

tain constant error In the determination of W



GRAVITY

A body at rest is not influenced by any gravitation other than that defined by NEWTON.

A moving body Is also affected by the so-called motional gravitation. For the earth

this additional gravitation is generated on the first hand by the earth's rotation about its own

axis. This centrifugal force (g) is computed as follows axis of

2 rotation
q = wpp

where p

w= angular velocity in radians --

p distance between the actual point
to the axis of rotation.

The work (Q) required to take the unit mass from the actual point to the rotational

axis thus is

p 2 22
Q Swx dx = 0.5w p

0

if the rotating body has a mass, the total potential is

W = f 5 1dV+ 0.5 2p2

r

This composed potential is generally called the gravity potential. The gradient

to this potential evidently constitutes the acceleration caused by gravity.r 1 2 1
7,W-- fl - co (r,..) dV + W p cs (P. X)

r Co 1 cc., x) dV Cos (P. x)r icc (r, y) Icc. (p, y)

whr (r, z) co (p. z)
where

cos (p, z) = 0 for the co-ordinate system in which the z-axis coincides with the

axis of rotation.

At each point the gradient is normal to the equipotential surface which includes the

point. Furthermore the gradient is tangent to the "plumb line". It is also evident that

from a rigorously mathematical point of view the "plumb line" cannot be considered as a

straight line. However in most practical applications this should be justified.



THE CONCEPT OF THE GRAVIMETRIC POTENTIAL

The conc-.pt of, potential has been extensively applied in electrical theory for a long

time. In modern geodesy the concept of potential also plays a significant role. To explain

the geodetic concept of potential in greater detail It may be useful to begin with the better

known definition of work. If two points A and B are given, it is possible to define

uniquely the work required to transport the mass m from the lower point A to the

higher point B

B
Work A-B - mgdh

A

where

g a the acceleration of gravity along the chosen path

dh - height differences

.............. Jdh

Here the potential difference is identical with the work requied o uampet

a unit mass along the same path. Consequently we get the potential differenceB

A-hB= gdhaE g = 81 dh1  h

A

The potential difference is the only mathematical oxpesaia free of obJectiom foe

"height differences" between two ponts. Foe peactical prposes one of the following height

concepts is often used.



Unreduced height

In levelling a direct measurement of the quantities dh is made. For simpler

measurements the variations in gravity can be disregarded and the height differeuces be

between two points be given as
B
E dh
A

It is to be noted however, that such a computation does not give a unique result

since the result is directly dependent on the path chosen between the two given points.

Orthometric height

The international gravity formula reads

y = 978. 049 (1 + 0.0052884 sin2 0 - 0. 0000059 sin 2 ) cmsek 2

From a comparison of the gravity values at the equator and pole we get

Yp Z YE (1.005288)

Consequently; if two potential differences of equal magnitude are compared we obtain

ypp Eh

hE = - h z 1.0053 hpYE  P

n a corresponding manner a theoretical correction can be applied to points situated

at arbitrary latitudes. The correction is called the orthometric correction. The

correction assumes that the actual gravity agrees with the theoretical gravity.

Dynamic height

The potential difference between two points A and B Is defined as

B
E g dhl
A

To decide "in which way the water will run" orthometric heights cannot be used.

After division of the potential difference by a suitable mean value of gravity we get a

height difference

£ h,

Ym

This height difference is called "the dynamic height difference". Only the dynamic

height difference give the so-called "work heights".



THE THEORETICAL MODEL EARTH

For the geometric definition of the theoretical model earth an ellipsoid (1924) with

the following data is used.

Semi-major axis: a = 6 3'78 388.000 m.

Semi-minor axis: b = 6 356 911.946 m.

a-b 1Flattening: 5 1

Angular velocity: w = 0. 729 211 513 • 10 /sec. (radians)

For the geophysical definition of the model earth the following data is used.

Gravity on the. 2
ellipsoid's surface: Y = 978049 (1 + 0.0052884 sin 0

- 0.0000059 sin 2 ) (m/lUgal)

where

( latitude.

Gravity at the elevation z 2

outside the ellipsoid: Yz • +0il z + ... of
oz V0 'z 2 8z 2

Yz Y7o - (308.78 - 0.45 sin2 qP) z + 0.00727 z2

2 Y 0 . z (milgal and km)

z + -R *... (for the sphere)

Theoretical height z

from the potential

difference (W - W)

W..w W 1-W 2  W -Wa
0 0 s/2 o

z - + - (0.000 157 854 - 0.000 001 034 s ,)+ - 0.000000025
0 0 Yo



THE EARTH'S FORM FROM POTENTIALS AND GRAVITY

For the computation of the shape of the earth by means of gravity measurements, it is

assumed that the acceleration of gravity is known at all points of the earth's surface. It is

further assumed that the latitudes and longitudes of all ppints of measurement are known, while

the elevation of the points above the international reference ellipsoid are unknown and sought

quantities. The solution to the problem offers various difficulties and therefore, in general, a

direct determination has not been carried out, but instead the choice has been to determine the

potential of a theoretical auxilliary model which is assumed to have the same surface as the

actual earth. Such a solution also assumes a knowledge of the potential differences between all

the measured points concerned. In this case one can obtain from GREEN's second theorem two

integral equations which define the relationship between the potentials and gravity of the two

models.

For the actual earth we obtain

wp (W ) dS (1) n

P 2s ~~'on rnr

where
Wp = potential at the actual point

W = potential at the running point

r = distance between the actual point and the

running point

n a normal to the surface (outer)

S = surface.

For the theoretical model earth we obtain

US u - O U ndS (2)

where

U a theoretieal potential at the actual pointp

U a theoretical potential at the running point.

Neither of the two integral equations are correct for the case represented here since

GREEN's theorem requires that the potentials be harmonic functions, e.g. that the following

LAPLACE equations should be satisfied



W 2 W 02W 02W
U x 2 + y2 z2

and

AU M 0 (4)

These LAPLACE equations are only satisfied for a body which- does not rotate.

However. in the further computations the differences between the two integral equations

are considered and the potential differences- are certainly harmonic functions.

Consequently we obtain

W-U n T= S[ T or  I (!- 2U)] dS (5)
P P 21 7 n O

where

T p disturbance potential at the actual point
p

T u disturbance potential at the running point.

We now want to solve this integral equation with respect to T We obtain

OW_. -gcos~.) ( VW (6)
On Og an

7nU = -a- YCos (y,n) Y VU (7)

where n a unit vector of the normal.

For an .approximately spherical surface we consider the following permissible approxi-

mations

O (8)

8uO -
(9)S n

Here g is the gravity on the surface of the earth while y is the corresponding

quantity for the model earth. For the computation of the theoretical gravity values we

require first a knowledge of the gravity field of the model earth. From the geometric point

of view the model earth Is assumed to be a rotational ellipsoid with the semi-major axis of

6 378 388 m and a flattening of 1:297. Gravity on the surface of the ellipsoid is assumed

to be defined according to the International Gravity Formula as follows

Yo 0 978049 (1 * 0.0052884 sin2 P - 0.0000059 ain 29p) moal (10)

where

9 n latitude.



Gravity at the elevation z above th: ellipsoid can be expressed by means of a series

development of the following type

o 2 2+6 z (11)

For the theoretical model earth we get
2 2

Yz = YO (308.'78 - 0.4b sin 2) z 4 0.0'? z + ... (12)

(Units: millIgal and km.)

or for the sphere
2yoz

'z 0 a ... (R a radius of sphere) (12 a)

Since the height of the physical surface of the earth above the ellipsoid is an unknown

quantity it is not possible to perform a direct computation of the theoretical gravity according

to (10). However, it Is assumed here that the actual potentials W are known for every point

on the surface of the earth. Furthermore it Is assumed that die theoretical model earth is an

equipotential surface with a known potential U . The potential differences W - U define0 0

a height difference In the potential field of the model earth as followsa U . I 2U 2 1 a 3 3
W a U -z + z - - z +

0 o z 2 2 3 "
az az

A known potential difference W - U can be evaluated as a "theoretical heaht"

according to the formula

U0 -W U0 W2U -z Yk " (14)

For the model earth, we obtain the corresponding"theoretical height"

U -W /U W\ 2 /u- A\3
Z 

3
4. 1-1 (0.000 157 854 - 0.000 001 034 aln 0) +. 0.000000025 .

Units: U and W in kilogal and meters; y in $aI; z in km.

Here it Is aumod that the z-axis at each point Is orthogonal to the ellipsoid.

Computation of de coruespooding gravity ( Z) can nowbe performed simply according

to equation (12)

Cosequently the normal derivative ! U can be denoted by
an

au -r y T
cn 6~. 1)L+v1i~ + 16



For the sphere the corresponding expression can be denoted as

au1 B 2] (16 a)

R = radius of the earth.

From equations (5) and (16) we obtain

Tp= " Co + C)sC (. 6)+} dS (17)

Here we have an integral equation with T as the unknown quantity. After T Is

computed the corresponding height difference (Az) can be determined according to equation

(15). The final height above the ellipsoid Is (z + Az).

For a spherical surface

I
a-
an -y cos (r, n) *-- (18)

r

Consequently the Integral equation for an approximately spherical surface is

T = + - dS (19)

and

T- S dS - dS (19 a)

This integral equations can be solved by means of spherical functions. The following

parameter is introduced

On
T = E E a Y ( .X) = Pa Y (20)

n-O ImI.1 am am

Thus we get

E~Y-j,, $ $ (YaY " L- Y ) dS = 411-;-; Y (g dS (21)

A further parameter is Introduced.

b =_ jS 4 i (g _Y) dS (22)

and from integral equation (21) we obtain

aY
E a Y -3 EE -- = E b Y (23)

2n 1



The relationship between a and b can now be determined

(2n - 2) a = b
2n + 1

or
2n + 1

2(n- 1)

Finally we obtain

T 2n + 1 b Y - EE (2n + 1) 2Y Q dS (24)

2(n - 1) 2 (n-1) 2n+)

or

T EE Y (g- y)dS (25)

In terms of LEGENDRE polynomials we obtain

T E2n 1 1 P (cos ) Q )dS (26)
41r (a - 1) n z

Consequently the disturbance potential can now be computed from

T = S k(g- yzdS (27)

where

k (cosec -6 sin * + 1 - cos w ( 3 In 2 + sin (28)

Thiss the well known STOKES' formula.
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EQUIPOTENTIAL SURFACES

A surface on which the potential is everywhere the same is called an equipotential

surfa'e.- According to GREEN's formula the following is valid on the surface of a body

I
8-

1 r I OW
W (W 7 - - dS

Thus for an quipotential surface we obtain

Wpc[I+ L dS 1 1W dS

r 2 2 r O S

or

orr Wp [i S- cos (r, n)dS cs d
2v, f2*. 2:1 rcog.ud

For the sphere

cos ( , n) = and we get

Wp 0 rdS

Finally. if g Is also constant we obtain

Wp E gR

From the geodetic point of view the most interesting equipotential surface I 'that

equilibrium surface which coincides with the oceans of the world. In geodesy this equl-

potential surface Is called the gold.



MATHEMATICAL PROPERTIES OF AN EQUIPOTENTIAL SURFACE

A level surface is characterized by the fact that at each point on the surface the potential

is of the same magnitude.

If we denote W as the scalar expression for the potential we have

W = constant.

In an arbitrary point P the potential is W°

If P is made the origin in a coordinate system we 'get the following expression for
0

the potential in an arbitrary point after a TAYLOR series development

W(X y. z) W W 0 +xW + yWy +zW
0~,y. Xo  y z

+ L X2Wxx y2W + Z2W + 2xyW 2xz W + 2yz W j
2 1 xx yy zz xy xz yz

+ terms of highcr order

where W • partial derivative with respect to x

W - yy

etc.

,Tkh th,; aid of matrices this txp ,;sion becomes

W (x. Y. Z) u W+rX y a] [W]-+ j1 [x y Z][Wz Wy W 1L]0 x x y xZ

Wy W Wyywy w z

+ terms of higher order.

Here the potential is expressed by m.-,atni of the following parameters

I:o Potential scalar = W
0

2:o Potential vector = [WI WY W]

3:0 Potential matrix = W W W

XX iy Na
W W

Ny 77 yZ1

L W W
L Xz yz zZJ



POTENTIAL VECTORS AND PLUMB LINES

The potential vector is also denoted by the gradient to the level surface. For this the

following symbols are used

"aw
7W * gradW a 7

OW W
ay y

OW
az W

From this we obtain the relation

. 2 2 2 2 2g.g x + W g "  g

It is evident that the gradient is tangent to the plumb line at the actual point. We orient

the coordinate axes so that the z-axis coincides with the normal to the level surface and obtain

W a O, W 0 and W a g
X y z

The radius of curvature of the plumb line Is computed from the principal normals as

follows

1

In the actual case we get

W ,W -WW .m

WY z •z Wyz Wy • z

*W W • W

From this we obtain for the normal to the plumb line

and



and

I= VW2 + W2  + 02
R xz yz

or1 =1 2 2 1

R gx + 9y g.n

where g. the derivative of dhe acceleration for the direction qp where tg 4o=
8x



POTENTIAL MATRICES AND THE LEVEL SURFACE

We have already oriented the coordinate system so that the z-axis coincides with the

normal to the level surface. We complement this with a reorientation of the xy-plane so

that the rectangular xy-terms are eliminated.

For this we determine the latent roots to the system

W.- W - 0xx yx

yx yy

which gives

w .W
"" 2 2 V(W,, Wy + 4 Wxy

W + W2 2

X2 2 xYx yy 4 Wxy

W X

SThe potential equation can now be written

1 y2 22WZZ)
W(xyz) t of o+gbr( o

terms of bidaer order



The quadratic potential term can now be easily evaluted in terms of height differences

after division by, g

dZ = - dZ
X 2g 2g=

where X, = -L x - "

R and R2  are here the two principal radii of curvature to the level surface.

(The X- and Y-axes are necessarily orthogonal in this system.)

The trace of the complete potential matrix is known as LAPLACE's equation

Sp W = W +W +W z = AWxx yy zz

where Sp W = trace of W.

For NEWTON's gravitation In empty space

Sp W = 0 lsvalid.

A potential which satisfies this condition is said to be harmonic.

When the actual body rotates we get

Sp W = 2W2  w aangular vtlocity

and where the density of the mass = 9

SpW = W 2  4 f9

f = NEWTON's gravitational constant.



SIMPLE LAYER POTENTIAL

The potential is a unique and continuous scalar quantity. Ignoring the choice of units,

the potential according to NEWTON can be denoted as follows

W = SSS27V
V

9 = density of mass (kg/m3); V = volume

r = distance between volume element and the actual point

In the interior of the mass with continuous mass distribution

V2 W = - 4n 9 (POISSON's equation)

is valid and in empty space

V2 W = 0 (LAPLACE's equation)

In the latter case the function is said to be harmonic.

While the above "volume potential" is connected directly to known physical rela-

tions, parallel to this we use, for example, the potential from a hypothetical layer of mass on

the surface.

W dS V2W = - 4:
r

o = layer density (kg/m2 ); S = surface

r = distance between the surface element and the actual point.

In this case we employ a so called single layer potential. The procedure lack

physical background in geodesy but nevertheless constitutes a valuable mathematical auxilliary

tool.

While the gradients to the volume potential are both unique and continuous, the single

layer potential derivatives exhibit a "pimp" (discontinuity) at the surface. This can be shown

in the following manner.



Consider an infinitesimal cylinder which cuts through the surface S and is parallel to

the surface normal

I I .-- ufce density

I

aw

n1

If we start from POISSON' a equation we obtain, after integratinn

V V

From GAUSS' theorem and GAUSS' law we further obtain

V S S

If dhe gradients are computed at right angles to the surface, they are parallel go the

vector dS and we get

(OW OW- -) su-f4c d

Q8 W

From this we get

OW OW
. -410ony On

y V



To deduce an expression for the continuous part of the derivatives we differen~iate in

the direction of the tangent

aW __ 0 or dS
3t ) 2 a t

When the continuous part is known we obtain the derivatives in the direction of the

normal after addition of the discontinuities above

aW W ~ d - %
7n 2 n

awO

II

5- cos(. m.0 ( .t

!oo

mTn Srco, ~~i~ (n. 

(in,1" 
P) S-2acs(,



where

Cr=Cos (r, n)
a

8r =cos (r. t)

Ct

From these we finally obtain

a W - cos (,, in) dS -2racos (n, mn

r

where

(r, mn) = angle between the vector in and the vector from P 0to the

running point

(n, m) xangle between the surface normal and the vector III

a 0 layer density at the point P0
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